In vitro cytotoxic activities of the membrane active nonapeptide LTX-315 (Oncopore™) against human melanoma cells

Abstract #2589

LIV-MARIE EIKE1, NANNAN YANG1, ØYSTEIN REKDAL1,2, BALDUR SVEINBJÖRNSSON1,2

1. Dept of Molecular Inflammation Research, Institute of Medical Biology, Faculty of Health, University of Tromsø-N 9037
2. Lytix Biopharma, 9294, Tromsø, Norway

Background

Cationic antimicrobial peptides (CAPs) are a diverse group of highly conserved peptides found in virtually all species of life as a part of the innate immune system. In addition to the bactericidal effects, CAPs have been shown to have antitumor activity[1-4]. LTX-315 is an anti-cancer nonamer peptide derived from bovine lactoferricin (Fig 1). Experimental studies in animal models have shown that intratumoral treatment with LTX-315 induces complete regression and systemic protective immune responses [5]. Tumor cells treated with LTX-315 are rapidly killed by a lytic mode of action of life as a part of the innate immune system. In addition of highly conserved peptides found in virtually all species of life as a part of the innate immune system. In addition of highly conserved peptides found in virtually all species of life as a part of the innate immune system. In addition.

Aim

To investigate the mode of action underlying the cytotoxic activity of LTX-315 against a human melanoma cell line LTX-315.

Results

- **Fig. 2 - In vitro kinetics of LTX-315**
 - Shows the in vitro kinetics of LTX-315 against a human melanoma cell line A375 after treatment with LTX-315.

- **Fig. 3 - The cancer cells are killed by a lytic mode of action**
 - Bright field confocal images of A375 cells treated with 17 µM LTX-315.

- **Fig. 4 - LTX-315 internalizes and associates with mitochondria**
 - Fluorescence-labeled peptide was associated with mitochondria (Fig 4) with a subsequent disintegration of the mitochondrial membrane (Fig 5) shown at ultrastructural level (Fig 6).

- **Fig. 5 - LTX-315 induces disintegration of mitochondria**
 - A375 cells were labeled with Mitotracker (red) and nucleus stained with DAPI (blue).

- **Fig. 6 - LTX-315 induces disintegration of mitochondria**
 - A375 cells were treated with 17µM LTX-315 for 60min and analyzed by transmission electron microscopy (TEM). Arrows: mitochondria.

- **Fig. 7 - LTX-315 treatment induces cytochrome-C release**
 - Cytochrome-C release in the supernatant after LTX-315 treatment (35µM) of A375 cell at designated time points (5, 15, 45 min) was determined by ELISA assay.

- **Fig. 8 - LTX-315 induces reactive oxygen species (ROS)**
 - ROS generation following LTX-315 treatment was measured by fluorometric assay.

- **Fig. 9 - Extracellular ATP levels following LTX-315 treatment**
 - Extracellular ATP levels following LTX-315 treatment (35uM) of A375 cell at designated time points (5, 15, 45 min) was determined by luciferase bioluminescence.

- **Fig. 10 - LTX-315 induces release of HMGB1**
 - LTX-315 treatment induces release of HMGB1.

Conclusions

These findings demonstrate that LTX-315 has a membrane perturbing effect that results in the release of a number of danger signal molecules (DAMPS). It’s effects against both the cell membrane and the mitochondria membrane may explain LTX-315’s ability to induce complete regression and long term protective immune responses in a number of experimental models (see poster 19 and 20).

Referanser

Lytx Biopharma AS | P.O. Box 6447 | N-9294 Tromsø, Norway | E-mail: post@lytixbiopharma.com | Phone: +47 77 67 55 00 | Fax: +47 77 67 55 01