

INVESTOR PRESENTATION

February 2018

2

3

INTRODUCTION

LTX-315 – COMPREHENSIVE SCIENTIFIC FOUNDATION

LTX-315 – CLINICAL DATA IN MONOTHERAPY AND IN COMBINATION

4

HIGHLIGHTS AND SUPPORTING DATA

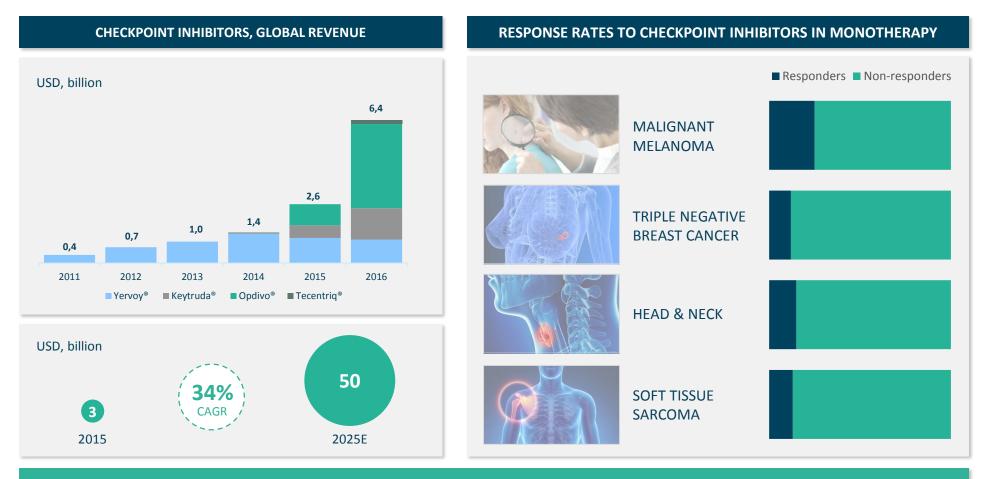
COMPANY IN BRIEF

Lytix Biopharma is a clinical-stage pharmaceutical company, developing novel immunotherapies to fight cancer

The company's clinical stage product, LTX-315, triggers a broad personal immune response through an effective release of potent immune stimulants and tumor antigens turning cold tumors hot. The 'release and reshape' effect of LTX-315 sensitize tumors to other types of therapies enabling a cornerstone position within immunoncology

SELECTED COLLABORATORS

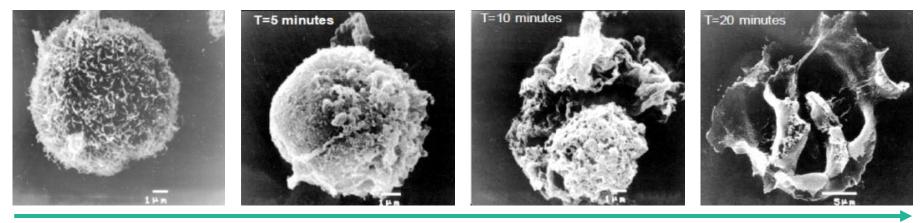
TODAY'S PRESENTERS



- Life science entrepreneur with a strong combination of scientific and business background
- 25 years of experience in the international pharmaceutical and biotech industry with an expertise in clinical oncology drug development

- Entrepreneurial mindset with broad experience from most aspects within life sciences sector
- Senior roles in life science within innovation and commercial development
- Management consultant at McKinsey & Co serving clients within the Pharma and Health Care practice

STRONG GROWTH IN IMMUNO-ONCOLOGY, HOWEVER LOW RESPONSE RATES REMAIN A CHALLENGE



LARGE NEED FOR DRUGS THAT CAN INCREASE RESPONSE RATES

ONCOLYTIC PEPTIDE LTX-315 OPENS UP FOR A PERSONAL CANCER IMMUNE RESPONSE

RAPID AND DIRECT LYSIS OF CANCER CELLS

Time: 0 min

5 min

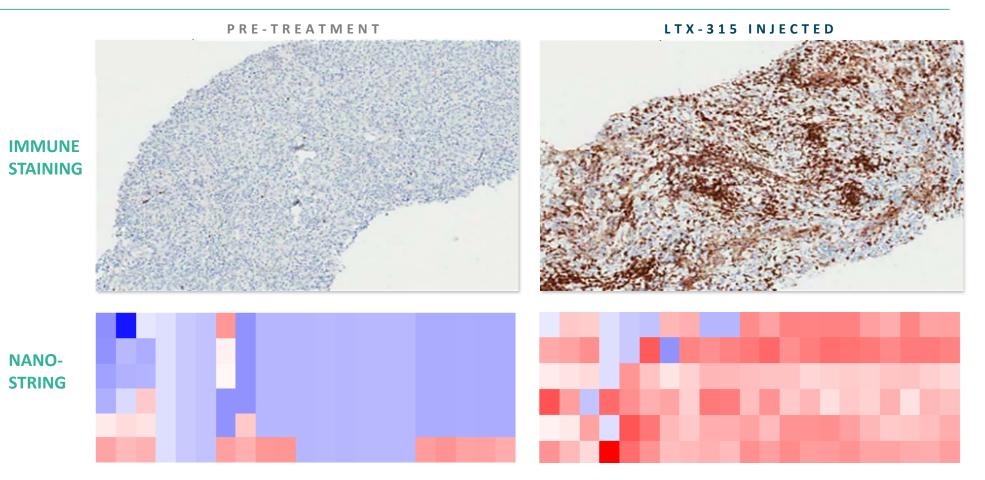
10 min

20 min

Recognition of the patients personal antigens (the unique barcode of the cancer cells) Strong stimulus of the innate immune system

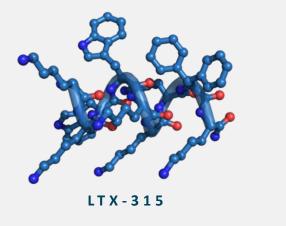
Targeting and disintegrating the mitochondria

Effective release of tumor antigens for adaptive immune response


- Mitochondria typically has a higher mutational load than the nucleus
- Generating tumor specific T cells addressing cancer heterogeneity

LTX-315 TURNS COLD TUMORS HOT AND PRIMES THE TUMOR

90% SUCCESS RATE TURNING COLD TUMORS HOT



15 out of 17 evaluable patients with increased T cell infiltration in LTX-315 monotherapy Immune staining: CD3 staining in breast carcinoma patient Nanostring: 6 patients on vertical axis, gene expression of the 21 key genes in signaling pathways in immune response on horizontal axis

EFFICIENT IMMUNOTHERAPY REQUIRES BOTH A PRIMING PHASE AND AN EFFECTOR PHASE

PRIMING PHASE

- Generation of tumor specific T cells
- Intratumoral therapy with LTX-315 ideal
 - Local stimulation and tumor antigens release
 - Downregulation of immune inhibitory cells

EFFECTOR PHASE

- Destruction of the cancer cells by the T cells
- Systemic therapy ideal
 - Strengthen tumor attack by blocking immune inhibitory mechanisms, e.g. anti PD-1/PD-L1

LTX-315 is well positioned as a combination therapy with checkpoint inhibitors and other immunotherapy drugs LTX-315 may also be an enhancer for T cell technologies like Adoptive T cell therapy, CAR-T cell therapy, etc.

LTX-315 IS THE ULTIMATE PERSONALIZED CANCER THERAPY

EFFICACY

- Comprehensive immunogenic cell death by targeting mitochondria
- Effective release of the patients personal neo-antigens
- Broad activation of key genes for immune response
- Access all cancer cells through electrostatic interaction

SAFETY

- ✓ Transient side effect profile
- ✓ Low risk of neutralizing antibodies
- ✓ No risk of T cell mediated responses towards agent
- ✓ No risk of integration into host genome
- ✓ No risk of virus mutations

No potential GMO issues

Oncolytic peptide LTX-315 shows promise to be efficacious and a simple way to activate tumors locally

LEADING EXPERTS ARE ENGAGED TO DEVELOP LTX-315 AS A CORNERSTONE DRUG IN IMMUNONCOLOGY

CO-OPERATION WITH LEADING UNIVERSITIES AND KOLS ENSURES HIGH VISIBILITY AND INSIGHT INTO LATEST DEVELOPMENTS

SELECTION OF LEADING RESEARCH SITES

Washington University in St.Louis School of Medicine

Prof. Mikael Pittet, PhD Ass. professor at Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA

Prof. Robert Schreiber, PhD AM Bursky & JM Bursky Distinguished Professor, Pathology & Immunology, Washington University School of Medicine in St. Louis

Prof. Guido Kroemer, M.D., PhD Professor of tumor cell biology, French Medical Research Council INSERM, Gustave Roussy, France

Prof. Laurence Zitvogel, M.D., PhD Professor of clinical oncology and tumor immunology, INSERM, Gustave Roussy, France

DRUG DEVELOPMENT PIPELINE

Indication	Program	Research	Preclinical	Phase I/II	Phase II	Phase III
All solid tumors	LTX-315					
Malignant melanoma (MM)	LTX-315 in combo with ipilimumab					
Triple Negative Breast Cancer (TNBC)	LTX-315 in combo with pembrolizumab					
TNBC or MM	LTX-315 in combo with checkpoint inhibitor					
Sarcoma	LTX-315 in Adoptive T cell Therapy					
Head & Neck Cancer	LTX-315 in Neoadjuvant setting					
Deep-seated solid tumors	LTX-401					

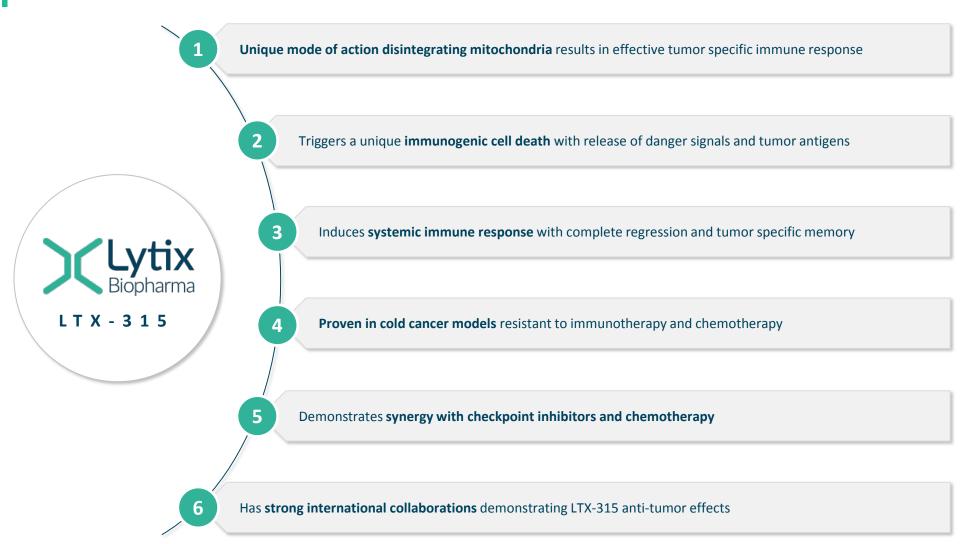
MARKET OVERVIEW OF CURRENT AND PLANNED INDICATIONS

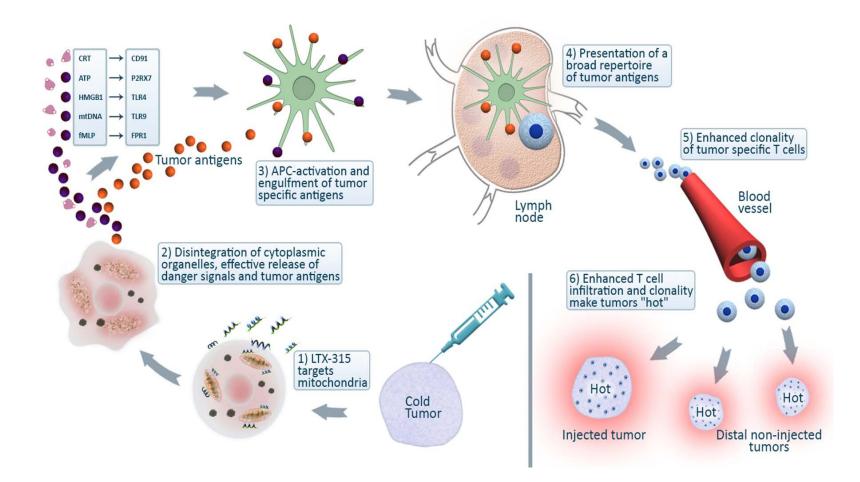
MALIGNANT MELANOMA	TRIPLE NEGATIVE BREAST CANCER	SOFT TISSUE SARCOMA	HEAD AND NECK
METASTATIC PATIENTS	METASTATIC PATIENTS	METASTATIC PATIENTS	METASTATIC PATIENTS
Incidence, USA: 30,000	Incidence, USA: 39,000 Incidence, 8MM: 115.000	Incidence, USA: 1,900-3,700	Incidence, USA: 63,000
5 year survival: 18%	5 year survival: 26%	5 year survival: 16%	5 year survival: 20-30%
Response rate to IO: 11-60% (Including combinations)	Response rate to IO: 5-18%	Response rate to IO: 8-18%	Response rate to IO: 13-18%
Phase I/II ongoing Phase II planned	Phase I/II ongoing Phase II planned	Phase II planned	Phase II planned

Robert et al. NEJM.org, April 19, 2015; Postow et al. NEJM.org, April 20, 2015; Robert et al. NEJM.org, November 16, 2014; http://www.cancer.net/cancer-types/breast-cancermetastatic/statistics, Nanda et al. J Clin Oncol 34:2460-2467; Global Data, 2016; Paoluzzi et al. Clin Sarcoma Res (2016) 6:24; Ferris et al. N Engl J Med 2016;375:1856-67. 2016; Pulte et al. The Oncologist 2010;15:994–1001, 2010; Seiwert et al. http://dx.doi.org/10.1016/S1470-2045(16)30066-3

THE IMMUNO-ONCOLOGY LANDSCAPE IS EVOLVING AND LTX-315 CAN HAVE A CENTRAL ROLE IN SOLID TUMORS

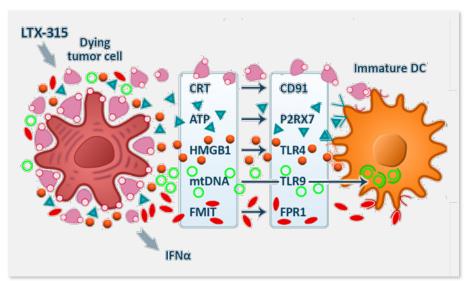
IMMUNE CHECKPOINT INHIBITORS	IMMUNE STIMULANTS/ACTIVATORS	VACCINES AND CELL THERAPIES	ONCOLYTIC THERAPIES
 Antibodies aPD-1/PD-L1/CTLA-4 Enzyme inhibitors IDO inhibitors 	 Antibodies OX-40,4-1BB, ICOS Toll like receptors (TLRs) TLR9 Interleukins IL-2 	 Peptides UV1 DNA based WT1 Cell based Sipuleucel-T CAR-T Neo-antigen based 	 Oncolytic Peptides LTX-315 Oncolytic Viruses Herpes simplex virus, coxsackievirus, myxoma virus, vaccina virus, adenovirus, parvovirus, etc.
 Effect dependent on: Level of T cell inflammation in tumors 	 Often stimulation of single elements of the immune system 	 Expose immune system to tumor antigens 	 Release of danger signals (immune stimulating substances)
Mutational burdenExpression of target (PD-1,	 Unspecific responses which can also result in tumor progression 	 Challenges due to tumor heterogeneity and patient 	antigen repertoire
PD-L1, CTLA-4, IDO)		specific tumor antigens	 Induction of both general (innate) and cancer specific (adaptive) immune responses
			(adaptive) immune res





COMPREHENSIVE SCIENTIFIC FOUNDATION OF LTX-315 DOCUMENTING ITS POTENTIAL IN IMMUNO-ONCOLOGY

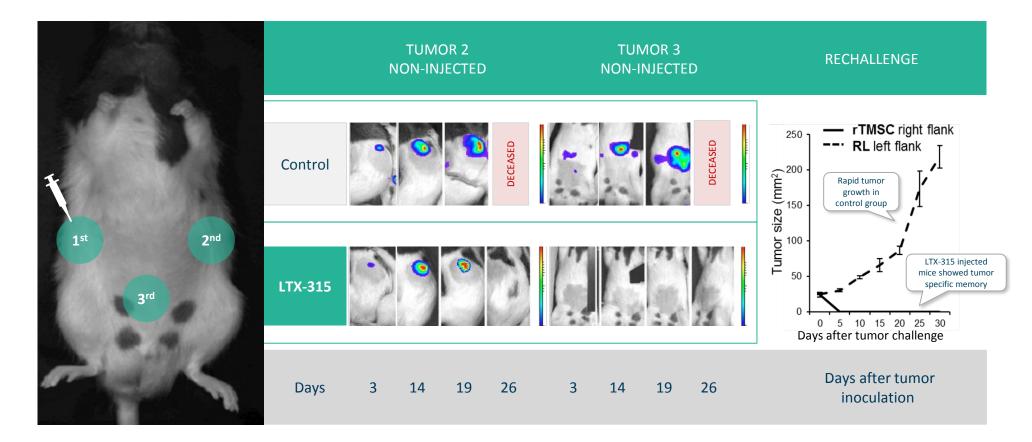
1 LTX-315`S UNIQUE MODE OF ACTION RESULTS IN EFFECTIVE "RELEASE AND RESHAPE" IN THE TUMOR MICROENVIRONMENT



LTX-315 TARGETS MITOCHONDRIA AND RELEASE DANGER SIGNALS AND TUMOR ANTIGENES

UNIQUE TARGETING OF MITOCHONDRIA

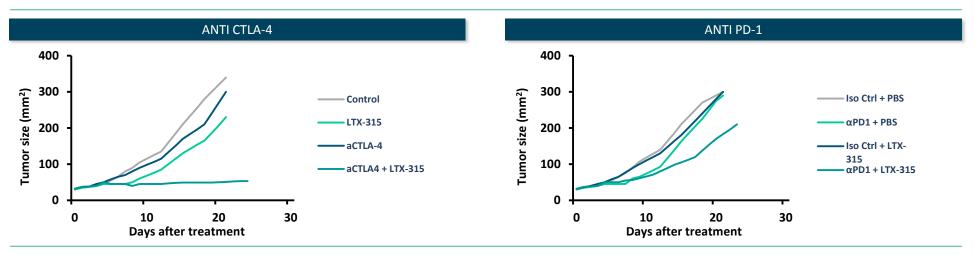
LTX-315 IMMUNOGENIC CELL DEATH (ICD)



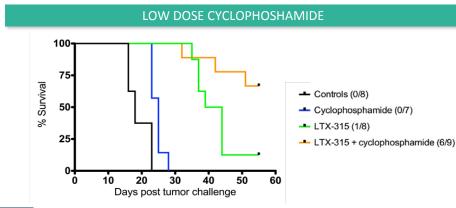
- Unique targeting of the mitochondria results in an effective release of both danger signals and tumor antigens
 - Mitochondria are "bacteria-like" and trigger a strong innate immune response
 - 10-20 fold mutational load in mitochondria

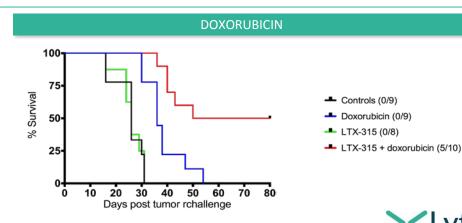
- Releasing potent immune stimulants and inducing all hallmarks of immunogenic cell death
- Releasing the personal antigens from the patients own tumor supporting a broad T cell response

3 LTX-315 DEMONSTRATES SYSTEMIC IMMUNE RESPONSE – COMPLETE REGRESSION WITH TUMOR SPECIFIC MEMORY



COMPLETE REGRESSION IN NON-INJECTED TUMORS EVEN WHEN THE TUMOUR WAS REINTRODUCED




5 LTX-315 DEMONSTRATES SYNERGY WITH CHECKPOINT INHIBITORS AND CHEMOTHERAPY

WITH IMMUNE CHECKPOINT INHIBITORS

WITH CHEMOTHERAPY

Yamazaki et al., 2016, Cell Death and Differentiation K. Camilio et al, unpublished data

5 STRONG INTERNATIONAL COLLABORATIONS DEMONSTRATING LTX-315 ANTI-TUMOR EFFECTS

Mer four UNIVERSITY	LTX-315's ability to reprogram tumors Prof M. Pittet
Washington University in St. Louis School of Medicine	LTX-315's ability to release neo-antigens Prof R. Schreiber
NIH NATIONAL CANCER INSTITUTE	LTX-315 and involvement of Toll-like receptors (TLR) Dr. J. Oppenheim
GUSTAVE/ ROUSSY CANCER CAMPUS ORAND PARIS	LTX-315's ability to circumvent resistance to PD1- blockade using TLR agonists <i>Profs L. Zitvogel & G. Kroemer</i>
Oslo University Hospital	LTX-315 in combination with immuno-chemotherapy <i>Prof G. Mælandsmo</i>
Cornell University.	LTX-315 in combination with irradiation Prof S. Demaria
Karolinska ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹	LTX-315 and chemotherapy in translational sarcoma models Prof B. Brodin

2

3

INTRODUCTION

LTX-315 – COMPREHENSIVE SCIENTIFIC FOUNDATION

LTX-315 – CLINICAL DATA IN MONOTHERAPY AND IN COMBINATION

4

HIGHLIGHTS AND SUPPORTING DATA

OVERVIEW OF LTX-315 CLINICAL PROGRAM

	2010–2012	2013–2	2013–2018		
Туре	Phase I	Phase I/II – Part A	Phase I/II – Part B (Ongoing)		
Indication	All solid tumors	All solid tumors	Monotherapy arm All solid tumors Combo with pembrolizumab Breast cancer (TN) Combo with ipilimumab Malignant melanoma		
Treatment regime	Monotherapy Single lesion	Monotherapy Multiple lesions Sequential Concurrent	One Monotherapy arm Two Combination arms Multiple lesions		
<u>)</u>	6 weeks	6 weeks + maintenance until PD	3 weeks		
Sites	1 🛟	8			
No patients	14 patients	28 patients	3 dose cohorts of 3 patients per cohort ¹		

CLINICAL DATA FOR LTX-315 IN MONOTHERAPY AND COMBO WITH CHECKPOINT INHIBITORS CONFIRMS ITS POTENTIAL

1 Safety confirmed in +70 patients in monotherapy and in combination with checkpoint inhibitors (ongoing) 2 LTX-315 turns ~90% of tumors hot and ensures infiltration of CD8+ T cells into the injected tumors 3 LTX-315 upregulates key genes involved in the immune-mediated tumor regression in patients Stable disease in 8 of 15 evaluable monotherapy patients (53%) 4 LTX-315 Anti-tumor effects documented in non-injected tumor 5 Complete response achieved in sequence with checkpoint inhibitor 6 7 Emerging data show promising response rate in breast cancer (triple negative) Planned multi-arm "pick the winner" trial to provide valuable data and strong newsflow 8

SAFETY CONFIRMED IN +70 PATIENTS IN MONOTHERAPY AND IN COMBINATION WITH CHECKPOINT INHIBITORS

PHASE I

- Once weekly for 6 weeks to a single tumor
- Dose range 2-11.6 mg per injection

No vital organ toxicity

- Maximum tolerated dose of > 8 mg observed (CTC grade > grade 3 allergic adverse events)
- Commonest adverse events: transient (secs/minutes) CTC grade 1-2 allergylike reactions

PHASE I

- Daily injections Days 1-3 week 1; once weekly weeks 2-6
- Each lesion treated for 6 weeks, then
- treating next available lesion
- Dose range 2-7 mg per injection

No vital organ toxicity

- No maximum tolerated dose; LTX-315 generally safe and well tolerated
- Commonest adverse events: Transient (secs/minutes) CTC grade 1-2 allergylike reactions (50% pts)
- NCI-CTC grade >3 allergic adverse events in four patients

PHASE I/II - ONGOING

- 3 arms: Monotherapy or in combination with pembrolizumab or ipilimumab
- One or more injectable lesions
- One or more injections per lesion
- Dose escalation: 3 mg, 4 mg or 5 mg

No vital organ toxicity

- No maximum tolerated dose
- No increased or unexpected checkpoint inhibitor-related adverse events
- Commonest LTX-315 related adverse events: Transient (secs/minutes) CTC grade 1-2 allergy-like AEs
- Two grade 3 LTX-315 related AEs: injection site pain, and pneumonitis (related to both LTX-315 and pembrolizumab)

Final results expected H1 2018

Ongoing phase I/II trial, as of Dec 1

AEs: Adverse Events; side-effects observed in patients; graded 1-5 with grade 1-2 being mild low grade and not significant. NCI-CTC: U.S. National Cancer Institute Common Toxicity Criteria

.

DOSING

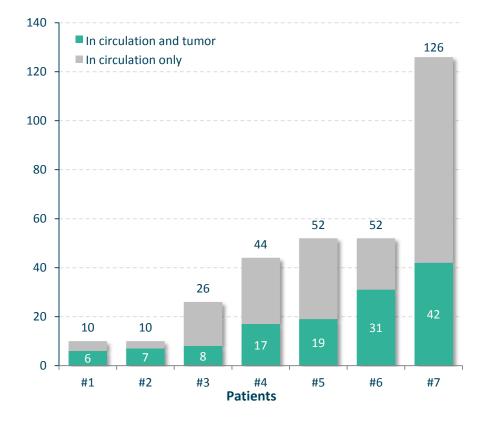
SAFETY OUTCOMES

KEY

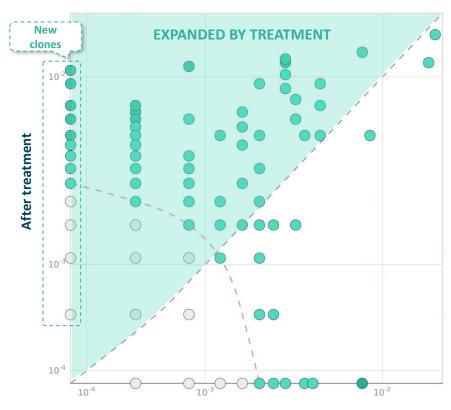
2 LTX-315 TURNS 90% OF TUMORS HOT AND ENSURES INFILTRATION OF CD8+ T CELLS TO KILL THE CANCER CELL

MONOTHERAPY: 15 OUT OF 17 EVALUABLE PATIENTS COMBO WITH PEMBROLIZUMAB: 4 OUT OF 5 EVALUABLE PATIENTS **MYO-EPITHELIOMA** BREAST CARCINOMA **BREAST CARCINOMA BREAST CARCINOMA** BASELINE BASELINE CD8 CD8 CD8 CD8 PD-L1 PD-L1 **WEEK** CD8 CD8 PD-L1 PD-L1

LTX-315'S ABILITY TO TURN COLD TO HOT CONFIRMED IN PATIENTS


Ongoing trial, as of Jan 10, 2018

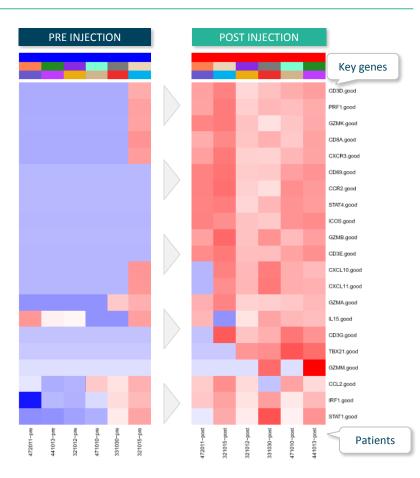
LTX-315 EXPANDS T CELLS IN CIRCULATION AND IN THE TUMOR

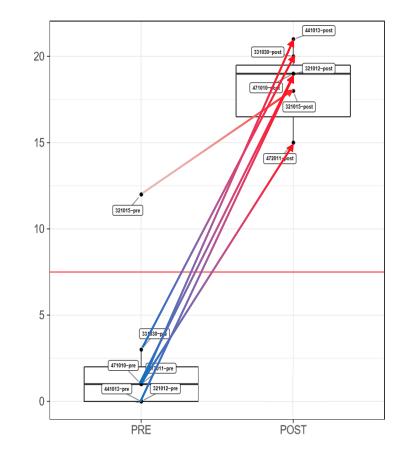

T cell clone distribution

INCREASED TUMOR SPECIFIC T CELL PRESENT IN BLOOD

Number of expanded T cell clones detected in circulation (% found in both circulation and in the tumor)

INCREASED TUMOR SPECIFIC T CELL PRESENT IN TUMOR

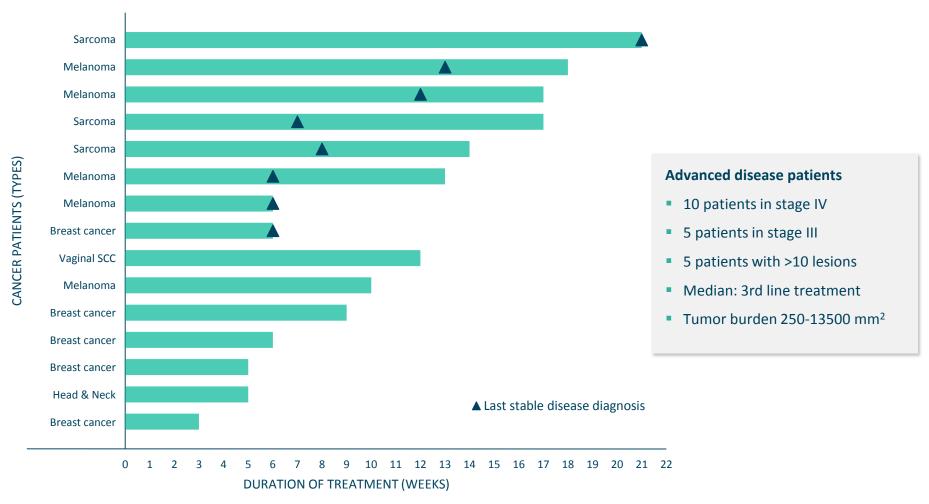

Before treatment


MONOTHERAPY

3 LTX-315 TURNS TUMORS HOT COMPREHENSIVELY BY UPREGULATING KEY GENES INVOLVED IN TUMOR REGRESSION

INCREASED KEY GENE EXPRESSION POST INJECTION

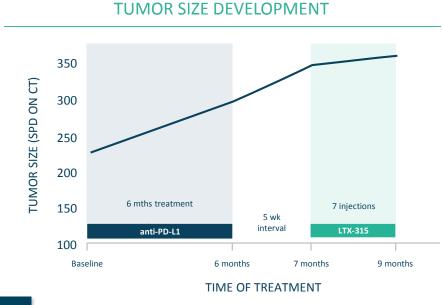
IMMUNOSIGN[®] 21 SCORE

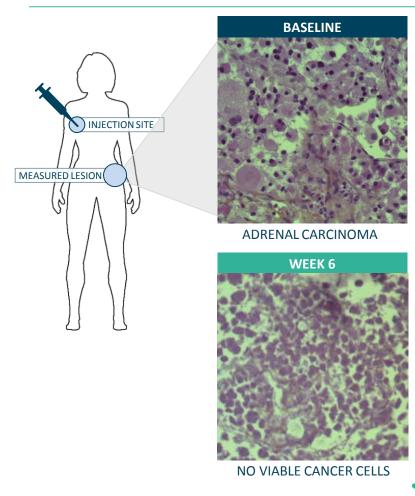


Of the 15 patients in monotherapy where tumors turned from cold to hot, six had injected tumors with adequate biopsy material for nanostring analysis Immunosign® 21 pre-selected genes: CCL2, CCR2, CD3D, CD3E, CD3G, CD69, CD8A, CXCL10, CXCL11, CXCR3, GZMA, GZMB, GZMK, GZMM, ICOS, IL15, IRF1, PRF1, STAT1, STAT4, TBX21.

MONOTHERAPY

STABLE DISEASE IN 8 OF 15 EVALUABLE PATIENTS WITH LARGE TUMOR BURDEN AND EXTENSIVE PRETREATMENT

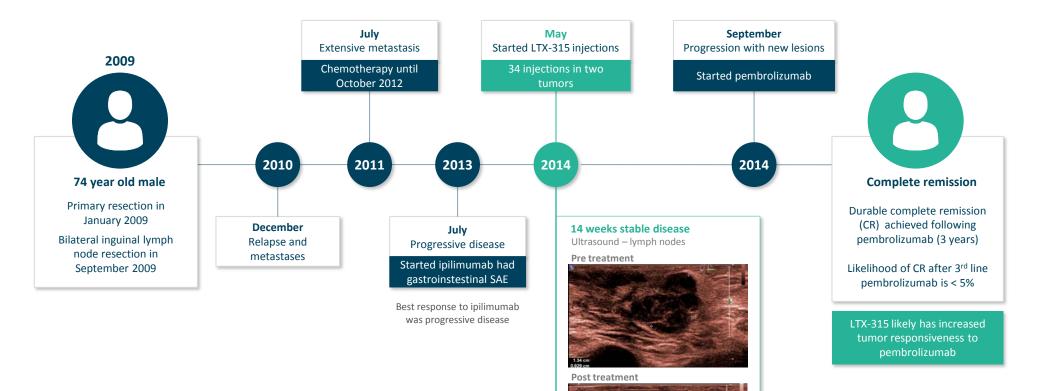



ANTI-TUMOR EFFECTS DOCUMENTED IN NON-INJECTED TUMOR

PATIENT BACKGROUND

- 38 year female, adrenocortical cancer, diagnosed in year 2000. Metastasis to lung, liver, peritoneum, bone.
- Multiple prior treatments: surgery, chemotherapy, radiotherapy
- Progressive disease on anti PD-L1 as last prior treatment before starting LTX-315
- Clinically stable disease for approximately 16 weeks

LARGE NON-INJECTED LESION PRE/POST INJECTIONS

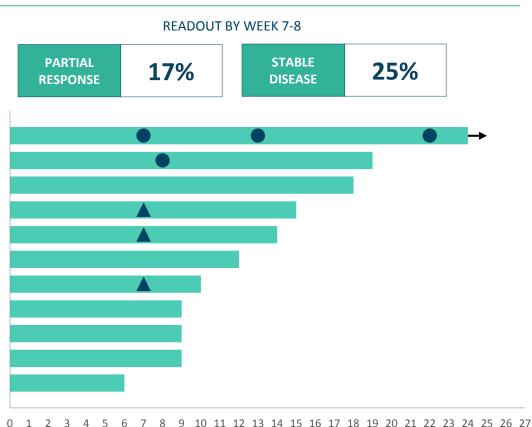

LTX-315 INJECTIONS

~

PATIENT CASE REPORT

6 DURABLE COMPLETE RESPONSE IN STAGE IV MELANOMA PATIENT WITH PEMBROLIZUMAB POST LTX-315 TREATMENT

COMBINATION WITH PEMBROLIZUMAB

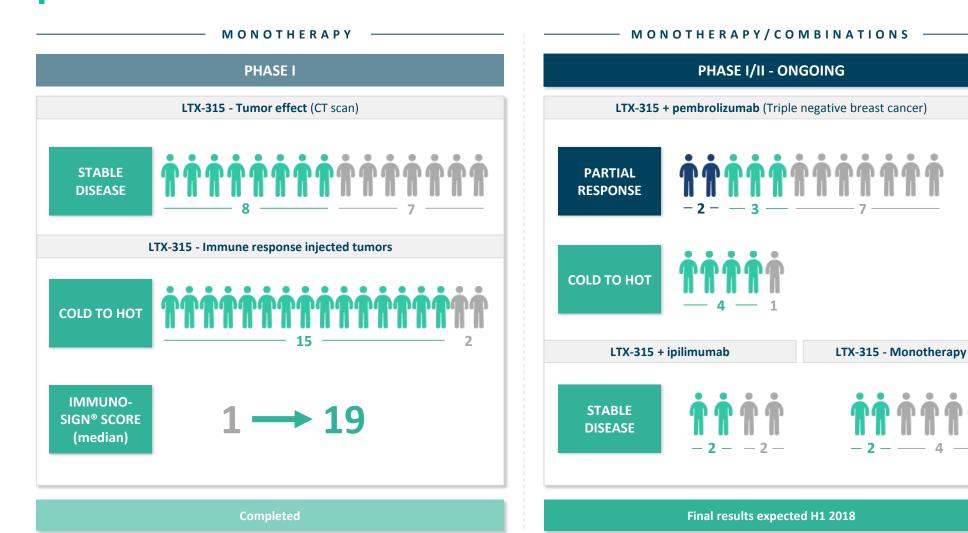

EMERGING DATA SHOWS PROMISING RESPONSE RATE IN TRIPLE NEGATIVE BREAST CANCER

PEMBRO MONOTHERAPY

Pembrolizumab Phase II Triple negative breast cancer response rates (Cohort A, pretreated patients)

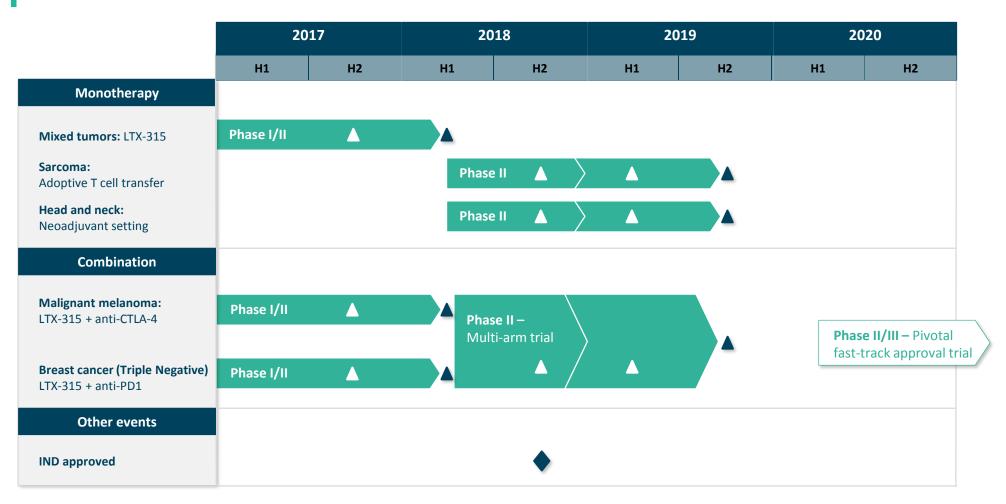
STABLE DISEASE	21%
PARTIAL RESPONSE	4%
COMPLETE RESPONSE	0.6%

- Keynote-086 investigated pembrolizumab (Keytruda®) in metastatic triple negative breast cancer patients
- High infiltration of T cells in the tumor were shown to increase response rates
- Data was presented at ASCO and ESMO 2017


LTX-315 AND PEMBROLIZUMAB IN COMBINATION

▲ Stable disease → Ongoing • Partial response

DURATION OF TREATMENT (WEEKS)



SUMMARY OF CLINICAL OUTCOMES TO DATE

1 By clinical assessment, CT scan to be conducted Evaluable patients and tumors by Feb 8, 2018 Phase I/II trials are ongoing, preliminary readouts by Jan 10, 201

DEVELOPMENT PROGRAM WITH MULTIPLE READOUTS PRODUCING STRONG NEWSFLOW

PHASE II COMBINATION TRIAL WITH LTX-315 TO OPTIMIZE THE PRIMING OF THE IMMUNE SYSTEM FOR BETTER OUTCOMES

TRIAL DESIGN IS BEING FINALIZED WITH EXPERT PANEL ADDRESSING THE LATEST INSIGHTS

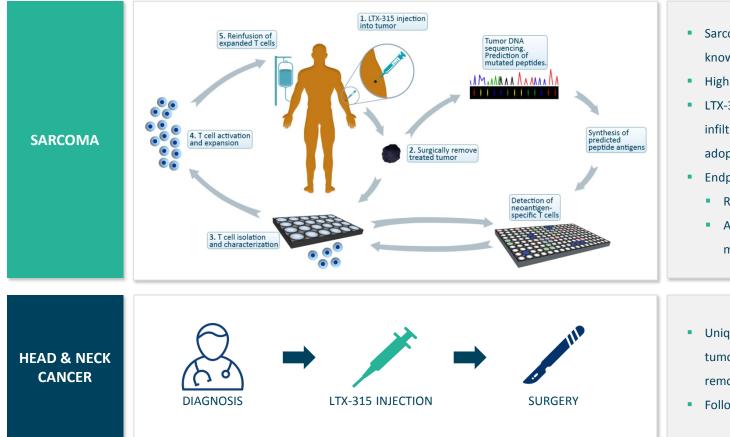
BACKGROUND

Multidrug combinations are required to improve patient outcomes

- Scientific data suggest to combine different immune targeted treatments to activate different steps that collectively drive the immune response – no single drug solution
- Synergy of LTX-315 and checkpoint inhibitors in animals is present
- Commercially strategy uses approved drugs combined with LTX-315

Local treatment is required to improve patient outcomes

- Local treatments can prime ("turn on") the immune system and turn cold tumors hot required to improve the efficacy of anti-PD(L)-1 checkpoint inhibitors
- Intra-tumoral treatment uses the patients own cancer as a vaccine to prime one's own immune system to fight its own cancer


TRIAL DESIGN

Testing different local and multidrug combinations to pick the winner

- Multi-arm trial including 40 60 patients with cohorts of 6 12 patients per arm
- Local intra-tumoral administration of both LTX-315 and anti-CTLA-4 in different combinations followed by anti-PD(L)-1 treatment
- In triple negative breast cancer and/or metastatic melanoma patients
- Option to expand the cohorts with the strongest efficacy signals
- Push the best combination for the next pivotal randomized phase II/III regulatory trial

EXPLORATORY PHASE II TRIALS IN SARCOMA AND HEAD&NECK 8 **CANCERS ARE UNIQUE OPPORTUNITIES**

- Sarcomas are typically cold tumors also known as "immune deserts"
- High unmet medical need
- LTX-315 to generate specific tumor infiltrating lymphocytes (T cells) and boost adoptive T cell therapy
- Endpoints:
 - Response rates and tumor regression
 - Analysis of immune signatures through multiple tumor biopsies
- Unique opportunity to better understand tumor immune signature after surgical removal of tumor pre-treated with LTX-315
- Follow up patients for immune memory

2

3

INTRODUCTION

LTX-315 – COMPREHENSIVE SCIENTIFIC FOUNDATION

LTX-315 – CLINICAL DATA IN MONOTHERAPY AND IN COMBINATION

HIGHLIGHTS AND SUPPORTING DATA

4

LYTIX BIOPHARMA INVESTMENT HIGHLIGHTS

UNIQUE PRODUCT

- Ideal drug for personalizing immunotherapy in combination with other drugs
- Turning "cold tumors hot" with a broad and deep immunogenic activation
- Promising clinical data in patients refractory to other available treatment
- Strong patent portfolio with protection until 2032, and being further expanded

MULTIPLE VALUE TRIGGERS

- Differentiated company in the fast growing immuno-oncology segment
- Potential as a local cornerstone treatment in multiple tumor types
- Multiple shots on goal with clinical trials in different settings
- Pipeline with 2nd generation oncolytic peptide entering preclinical development

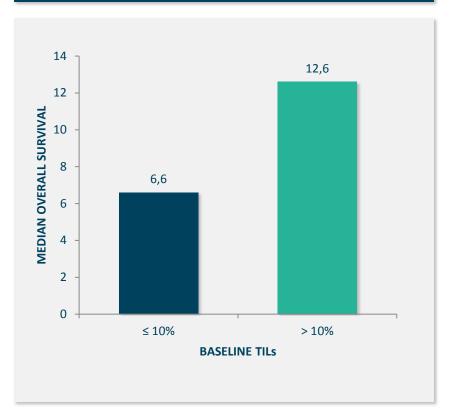
STRONG TEAM

3

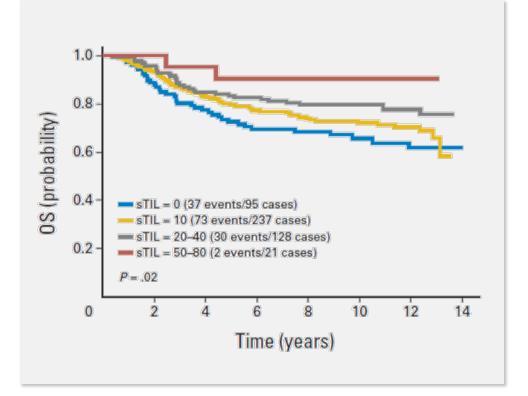
2

- Management team and Board of Directors with international pharmaceutical drug development and commercial experience
- Solid international network and collaborations

Biopharma


STRONG PATENT PORTFOLIO WITH PROTECTION UNTIL 2032

Product	Description	EU	US	JP	Other ¹
Chemically modified peptides (incl. LTX-315)	Methods-of-use claims	Granted, expires 2019	3 granted, expires 2022	Granted expires 2019	AU, NO, CA
Adaptive immunity	Methods-of-use claims	Pending, expires 2027	2 granted, expires 2029 and 2020		AU, CA, NO
LTX-315	Composition-of-matter claims	Pending, expires 2029	Granted, expires 2032	Granted, expires 2029	AU, BR, CA, CN, IN, NZ, KR, RU, SG
LTX-315 Combination	Methods-of-use claims	2 pending, expires 2034	2 pending, expires 2034	Pending, expires 2034	PCT ² (not selected)
T cell clonality	Methods-of-use claims	NA	NA	NA	PCT ² filed February 2017
Reshape of tumor microenvironment	Methods of use	ΝΑ	ΝΑ	NA	PCT ² filed February 2017
LTX-401	Composition-of-matter claims	Granted, expires 2030	Granted, expires 2030	Granted, expires 2030	AU, BR, CA, CN, IN, NZ, KR, RU, SG


INCREASED LEVELS OF TUMOR INFILTRATING LYMPHOCYTES (TILs) ARE ASSOCIATED WITH IMPROVED SURVIVAL

BASELINE TILS HAVE BEEN SHOWN TO BE A PREDICTIVE FACTOR FOR SURVIVAL IN TRIPLE NEGATIVE BREAST CANCER

IN COMBINATION WITH CHECKPOINT INHIBITOR

IN COMBINATION WITH CHEMOTHERAPY

