Complete and specific regression of disseminated tumors in a novel rat mesenchymal three-tumor model after intralesional treatment with the nonapeptide LTX-315 (Oncopore™)

Ø. REKDAL1, J. NESTVOLD3, M. WANG2, K. CAMILIO4, B. SVEINBJØRNSSON4, G. KVALHEIM2.
2The Norwegian Radium Hospital, 3University of Oslo, 4University of Tromsø, 1Lytix Biopharma AS, NO-9294 Tromsø, Norway.

Background
Intralesional administration of anticancer drugs derived from host defense peptides represents a novel innovative immunotherapeutic strategy.

Our structure-activity relationship studies on host defense peptides have culminated in the engineering of small peptides with enhanced anticancer activity (1). Ultimately, these efforts have led to the development of a chemically modified 9-mer peptide, LTX-315.

LTX-315 has shown to induce complete tumor regression and prevent relapse and metastasis in several animal models (2,3).
A phase 1 study has been completed with LTX-315 and a new clinical study is ongoing.

Aim
To investigate whether LTX-315 induces abscopal effects in a novel rat mesenchymal three-tumor model.

Results

Fig. 1 LTX-315 induces the release of DAMPs in vitro

Fig. 2 LTX-315 eradicates treated and non-treated lesions in the three-tumor model

Fig. 3 LTX-315 induces long term protective immune responses

Fig. 4 Immunohistochemical analysis of LTX-315-treated tumors

Conclusions

• Here we demonstrate that intralesional treatment of one single lesion with LTX-315 (Oncopore™) is sufficient to cure animals with disseminated tumors.

• Systemic and long lasting protective immune responses were obtained in LTX-315 cured animals.

• LTX-315 induced an increased infiltration of CD3+ and CD8+ T cells into the tumor.

• LTX-315 represents a novel intralesional therapeutic strategy with potential to induce clinical responses in metastatic diseases.

• A phase 1/2a study is in progress with LTX-315.

References