LTX-315, a first in class oncolytic peptide reshapes the tumor microenvironment in the majority of patients with advanced metastatic tumors: Results from an ongoing clinical phase I study

Eystein Rekdal, Jean-Francois Bürri, Ahmed Alnadi, Paul F. Brunsvig, Rebecca Sophie Kristeleit, Dag Erik Børsing, Nina Louise Person, Aurélien Matambarlé, Delphine Lorient, James Galon, Francois Vermette, Andrew Saunders, Bjørn Svenningsen, Berit Nicolaisen, Vibeke Sundvold Gerstad, Jamie Spicer

Lytx Biopharma, Norway. Clinique Université, UCL, St. Luc, Belgium. Institut Jules Bordet, Université Libre de Bruxelles, Belgium. Oslo University Hospital, Norway. University College London Hospital, UK. Haukeland University Hospital, Norway. Centre for Cancer Biomarkers (CCB), University of Bergen, Institute Gustave-Roussy, Park, France. INSTITUT JULES BORDET, UNIVERSITÉ LIBRE DE BRUXELLES, BELGIUM. INSERM, INRS, PARIS, FRANCE. HAUKErLAND University Hospital, Norway. Department of Integrative Cancer Immunology, INSERM, PARIS, FRANCE. Kings College, Guy’s Hospital, UK.

Background
LTX-315 is a first in class oncolytic peptide with unique “release and reshape” properties. Pre-clinical studies of LTX-315 demonstrate:
- Unique immunogenic cell death mode of action by targeting the mitochondria
- Disinhibition of cytoplasmic organelles resulting in effective release of chemokines, danger signals and a broad repertoire of tumor antigens
- Reduced number of immunosuppressive cells
- Enhanced infiltration of T cells and T cell clonality
- Complete regression of injected and non-injected tumors (i.e. Abscopal effect)

A Phase I clinical trial was initiated to evaluate the potential benefit of the oncolytic peptide LTX-315 as a novel intralesional therapeutic strategy.

Aim
The aim of this study is to evaluate the safety and tolerability of intra-tumoral LTX-315 monotherapy and determine the recommended phase II dose and schedule.

LTX-315’s “Release and Reshape” MoA

Study Design
Primary Endpoints
- Safety (including DLTs, AEs, SAEs, lab assessments) of LTX-315
- Inflammatory markers in injected tumor tissue, such as tumor infiltrating lymphocytes

Secondary Endpoints
- Local effects of LTX-315 by assessment of:
 - Necrosis in index lesions determined by ultrasound and resection/biopsy
- Systemic immunological response with LTX-315 in peripheral blood

Safety Summary

- Doses of between 2-7mg per injection have been evaluated; no MTD was observed
- LTX-315-related adverse events (any grade) have been observed in 21 of 28 patients who received ≥ 1 LTX-315 injection
- 7 of 26 patients (25%) had CTC ≥ 3 grade 3 AEs including allergic reaction/anaphylaxis (4), pain on injection (2) and sepsis (1)
- 3 of 4 episodes of ≥ grade 3 LTX-315 related allergic reaction/anaphylaxis occurred; 3 occurred after > 10 weeks of treatment; one was a DLT and occurred in week 2

LTX-315 safety (n=28)

Immune related response (irRC) assessment

Stable disease (SD) median duration 11 weeks by irRC was observed in 8 of 15 evaluable patients (53%)

LTX-315 converts cold tumors to hot

- Biopsies of injected tumors taken at baseline and after treatment have been obtained in 13 patients. All biopsies were taken in up to 3 planes of orientation.
- Enhanced infiltration of CD8+ T-cells in injected lesions in 15 of 17 patients (88%)

Conclusion

- LTX-315 is generally safe and tolerable, the majority of toxicities are transient grade 1-2, and include hypotenison (asymptomatic) flushing, paresthesia and rash
- No MTD has been reached
- Regression in injected and non-injected lesions observed:
 - Stable disease (SD) median duration 11 weeks by irRC was observed in 8 of 15 evaluable patients (53%)
 - Abscopal effect observed
- Elevation of tumor infiltrating lymphocytes in injected lesions was observed in 15 of 17 (88%) evaluable patients
- The HaloDx Immune Gene Expression Signature Immunosign® 21 analysis of LTX-315 treated tumors shows:
 - Clear effect on key genes (effector T cell, Th1, orientation, chemokines and cytokines) involved in immune-mediated tumor regression
- LTX-315 converts cold tumors to hot, as evident by immune phenotyping using gene expression analysis
- Results support the rationale and potential benefit of LTX-315 as a novel intratumoral immunotherapy
- Combination testing of LTX-315 with immune checkpoint inhibitors is ongoing in melanoma and breast cancer

References
2. Sveinbjørnsson, B. et al.; Future Medicinal Chemistry (2017)